Structure of Living Beings.
Biology

Structure of Living Beings.


Differentiation between living beings and inert matter is an easy question, at least in appearance. This is, however, because we usually think about living things that can be clearly seen growing, moving or, summing up, changing.  But if we take a look at our environment, we discover that we are surrounded by living beings, such as lichens, that live attached to rocks, that can be hardly differentiated of a simple stain. We need to do a deeper analysis to prove that it is really an organism, because it grows very slowly, it does not move and reproduces in a peculiar way, with no seeds, or fruits.
We usually forget that many living beings are not visible to the naked eye. And sometimes the boundaries of life are quite diffuse. Viruses, for instance, are a nucleic acid surrounded by a capsule made up of proteins, unable to reproduce by themselves, so are they real living beings? We can take the matter further, and talk about plasmids, those simple circular nucleic acids that live in bacteria and plant cells, are they living beings only because they are able to control their own replication? Or prions, made up only of proteins, but capable of reproduction and even to cause diseases.
Vital Functions and Complexity.
The main difference between living beings and inert matter is the ability of living beings to carry out the three vital functions.
Is there any chemical difference between living beings and inert matter? Although the living beings and the inert matter that surround them is based on the same chemical elements, there are some important differences related to the amount of these elements. There are chemical elements that are very abundant in inert matter but not in living beings, and chemical elements very abundant in living beings but rare in matter. For instance, carbon or nitrogen are very abundant in living beings, but rare in inert matter. On the other hand, aluminium is very abundant in rocks, but is a trace element in living beings.
There are, besides, important differences related to:
The chemical reactions in living beings must take place under severe control. These chemical reactions are usually very complex. We call metabolism to all the chemical reactions that take place in a living being.
Metabolism can be divided into two groups of chemical reactions:

Living beings are, in some way, systems with rising complexity. We can draw a diagram showing this this rising complexity, beginning with the atoms and finishing in the complete organism, or further, with the populations, ecosystems or even the whole complete biosphere.
Atoms and Elements.
Around one hundred different atoms, or chemical elements can be found in nature. The rest of elements (until the 119 currently discovered) are not natural (must be produced in laboratories and last millesimal parts of second). Not all the natural elements can be found in living beings, though many of them are present, in high or low quantities. 


The chemical elements of living beings can be divided into two groups:
Although some chemical elements can be found isolated, they usually join forming molecules.
Molecules.
Molecules can be defined as two or more atoms, identical or different, joined forming a chemical substance. There are two types of molecules: inorganic and organic.
Inorganic Molecules.
They are simpler, and can be formed in a natural way with no intervention of living beings. The most abundant and important inorganic molecule in living beings is the water (H2O). Life is related to water. The first living beings were evolved in the oceans. And is always the main component of living beings. In human beings, for instance, our mass is 70% water (some tissues, such as bone or fat tissue, have low percentage of water, others such us nervous tissues have high amounts). Another important inorganic molecule is O2, called molecular oxygen. This is the oxygen we breathe and the molecule used by our cells to respire. Another very important inorganic molecule is CO2, the carbon dioxide produced in the respiration. And mineral salts, a large group of salts solved in our body water, or crystallised such as the hydroxyapatite slats (made up of calcium carbonate crystals) in our bones.
Organic Molecules.
These molecules are more complex than inorganic ones, and a living being is required to their formation (although there are some exceptions, such us methane, that can be formed in volcanoes, for instance). There is a huge variety of Organic Molecules. They can be classified into the following groups: 



Macromolecules.
Macromolecules are large organic molecules, made up of several organic molecules joined. There are lots of different organic molecules. We are going to examine the most important ones:

Proteins can have other molecules attached, such us sugars (they are called glycoproteins), lipids (they are called lipoproteins) or other proteins (they are called complex proteins). According to their function, there are several types of proteins. Enzymes are not only the most important type of proteins, but also the main functional molecule of the living beings. Enzymes are proteins that accelerate the chemical reactions that take place in living beings. Due to this, enzymes are the main functional molecule, because they control the chemical reactions: many chemical reactions would  not ever take place without the intervention of an enzyme. And all the chemical reactions of the living being are controlled by one enzyme, so enzymes control all the chemical processes of the cells. Other proteins have structural functions. Collagen, for instance, is a filament-shaped protein that give physical support to many tissues (such as the conjunctive, the cartilage or the bone tissues). And finally there are some non enzymatic proteins that carry out several functions, such us the proteins that transport substances through the plasmatic membrane of the cell (channel proteins).







- #86 Energy And Atp
All living organisms need a continuous supply of energy to maintain their metabolism. They must absorb either light energy in photosynthesis or chemical potential energy to do the work necessary to stay alive. Such work includes: ? Anabolic reactions:...

- #7.2 Biological Molecules - Syllabus 2016
2.1    Testing for biological molecules 2.2    Carbohydrates and lipids 2.3    Proteins and water This section introduces carbohydrates, proteins and lipids: organic molecules that  are important in cells. Nucleic...

- #7.1 Biological Molecules - Syllabus 2015
? Structure of carbohydrates, lipids and proteins and their roles in living organisms ? Water and living organisms Learning Outcomes Candidates should be able to: (a) [PA] carry out tests for reducing and non-reducing sugars (including using colour...

- Metabolism
METABOLISM All the biochemical reactions taking place inside a living system together constitute metabolism. E.g.GlycolysisKreb's cycleRespirationPhotosynthesis Removal of CO2 from amino acids to form amine.Removal of amino group in a nucleotide...

- Cell Anatomy
Cell Anatomy.Cell (from Flank Organ of Syrian Hamster)A cell is the functional unit of living beings. All the living beings are made up of one or more cells (the only exception are viruses, not considered living beings by many scientists). Each cell in...



Biology








.