Respiratory System.
Biology

Respiratory System.


Respiratory System.
The cells of our body consume oxygen in order to obtain energy. In this process, called oxidation, the cells burn glucose using oxygen, releasing carbon dioxide, and obtaining the necessary energy to carry out several metabolic processes. The respiratory system is responsible for transporting and providing oxygen from the air to the blood and carbon dioxide from the blood to the air. This air will be exhaled after the exchange process. Anatomy of the Digestive System.
Respiration includes the whole exchange process. It has three different phases:
Anatomy of the Respiratory System.
Respiratory Organs.
The respiratory system can be divided into the following parts:
The respiratory system can also be divided into two big divisions:
Structure of the Respiratory System.
We are going to study, one by one, the most important anatomical structures of the respiratory system:
Respiratory System: Anatomy.

Physiology of Respiration.
Introduction.
First, we will study the process called pulmonary ventilation, that explains how the air flows from the exterior of our body to the lungs and from the lungs to the exterior of our body. Then, we will study the exchange process between the air and the blood, that takes place in the pulmonary alveoli and it is called external respiration. Finally we will study the exchange of gases between the blood and the internal tissues, that is called internal or tissue respiration.
Pulmonary Ventilation.
Pulmonary ventilation, also called breathing, is the movement of the air between the exterior of the body and the lungs. The air enters the lungs from the environment to in a process called inhalation. The air exits the lungs to the environment in a process called exhalation. These movements of air are a consequence of the changes of pressure in the lung and of the special properties of this organ, that is capable of increasing its volume by distension and to return to its original size by elasticity.
The process of entrance of air into the lungs is called inhalation. It takes place when the lungs expands, increasing their volume. The expansion results from the contraction of the respiratory muscles: the diaphragm and the internal intercostal muscles. The most important muscle is, by far, the diaphragm. When it contracts, its convex morphology changes, becoming flatter. This movement pulls the lung down, enlarging its lower part. The internal intercostal muscles raise the thoracic cage, causing the expansion of the lungs because they are closely attached to the ribs. These two processes increase the volume of the lungs. The higher volume leads to a drop in the internal pressure, so that the air moves from the environment to the lung.
The release of air is called exhalation. It is a passive process, no muscular contraction is required. The elastic fibres of the lungs and the weight of the thoracic cage decrease the volume of the lungs when the respiratory muscles relax. The reduction of volume leads to an increment of the internal pressure, so that the air moves from the interior to the exterior.
Although this is a passive process, the contraction external intercostal and the abdominal muscles can accelerate the release of air. This is called forced exhalation, and is carried out when the body needs to improve the exchange of air.
Ventilation Volumes.
During normal breathing around 500ml of air is exchanged between the lungs and the environment. This amount of gas that enters and afterwards exits from the lungs is called Tidal Volume (VT).
Not all this gas is available to exchange oxygen and carbon dioxide. Around 150ml of air never reaches the alveoli and stand in the outer respiratory ducts: nasal cavity, pharynx, larynx, trachea, bronchi and bronchioles. This volume that is not directly used in the pulmonary respiration is called Dead Space (DS).
The Respiratory Minute Volume (MV) is the amount of air exchanged between the lungs and the environment per minute. An adult human being breathes approximately  twelve times per minute, exchanging 500ml per breathing (Tidal Volume), so it is easy to calculate that the MV is 6000ml/min. 
We can breathe more deeply, inhaling more than 500ml. We can reach between 3000ml and 3500ml more in a forced inhalation. This is called Inspiratory Reserve Volume (IRV). We can even take more air if, just before the forced inhalation, we exhale as much air as we can. This air that we can release through forced exhalation, around 1200ml, is called Expiratory Reserve Volume (ERV).
After exhaling all the air that forced expiration allows, there is a volume of air that remains in the respiratory system. This amount of gas that we cannot release is very important, because it prevents the duct and alveolar sacs from collapsing. It is 1200ml more or less, and it is called Residual Volume (RV).
If we add the Tidal Volume to the Inspiratory Reserve Volume we obtain the Inspiratory Capacity (IC). It is around 3600ml. If we add the Residual Volume to the Expiratory  Reserve Volume we obtain the Functional Residual Capacity (FRC). It is around 2400ml.
The Inspiratory Reserve Volume added to the Tidal Volume and to the Inspiratory Reserve Volume is called Vital Capacity. It is around 4800ml. If we add all the volumes (IRV+VT+ERV+RV) we obtain the Total Lung Capacity (TLC). It is around 6000ml. 
Ventilation Volumes

Pulmonary Respiration Physiology.
The physiology of pulmonary respiration is based on the concentration gradients or differences in partial pressure. The internal membrane of the lungs is extremely thin (around 10.5?m), so that the gases are easily exchanged. And the internal surface of the lung is really broad, around 70m2 if we count all the alveolar surface.
The air that reaches the alveoli is very rich in oxygen, between 100-105mmHg. The concentration of oxygen in the blood in the capillaries of the lung, however, is quite low, around 40mmHg. Due to this, the oxygen tends to flow from the air to the blood, until both concentrations become equivalent. When the blood exits the capillaries of the lung, its concentration of oxygen is approximately 110mmHg.
To improve the movement of oxygen in the blood, it is transported linked to a special protein called hemoglobin.
Carbon dioxide concentration in the air is around 40mmHg. When the blood arrives in the alveoli, its concentration of carbon dioxide is around 45mmHg. Due to this, the carbon dioxide tends to flow from the blood to the air until both concentrations become equivalent. When the blood exits the capillaries of the alveoli the concentration of carbon dioxide is 40mmHg.
The carbon dioxide is not transported by any protein, but is transformed into a different substance called bicarbonate.
Tissue Respiration Physiology.
The situation in the tissues is just the opposite to in the lungs. The extracellular fluid that surrounds the cells is very poor in oxygen, because it has been consumed by the cells. Its concentration is 40mmHg. As we studied, the concentration of oxygen in the blood that comes from the lungs is 100mmHg. Due to this, the oxygen tends to flow from the blood to the tissues until both concentrations become equivalent.
Carbon dioxide, however, is more concentrated in the extracellular matrix, because the cells produce and release this substance during their metabolic activity. Its concentration is 45mmHg, whereas in the blood the concentration is around 40mmHg. So the carbon dioxide flows from the extracellular matrix to the blood until both concentrations become equivalent.
A part of this carbon dioxide is transported by the blood linked to hemoglobin, but only a low quantity, around the 23%. A small amount, the 7%, is transported dissolved in the plasma. The rest of the carbon dioxide, around the 70%, is transformed into bicarbonate by an enzyme called carbonic anhydrase. It is so how it is transported, because this substance can be easily dissolved in the plasma.
Respiratory System: Anatomy.

Control of Breathing. 
Breathing is an extremely controlled process, because it must be finely adjusted to the requirements of the body. An ordinary human being consumes around 200ml of oxygen per minute. While intense exercising, however 30 times this amount can be consumed. To increase the amount of taken oxygen the body increases the respiratory rate and depth.
The respiratory rate at rest is controlled by some areas of the nervous system located in the bulb and the pons. The Bulb Rhythmic Area controls the basic system of respiration and the respiratory rate at rest. The Pneomotaxis Centre controls the coordination between inhalation and exhalation. The Apneustic Centre controls the inhalation.
Other zones of the brain have connections to these respiratory centres and they can raise or decrease the respiratory rate when it is necessary. When the pH of the blood decreases, for instance, it is related to an increment of the bicarbonate dissolved in the plasma, so the respiratory rate must be increased to release the excess of carbon dioxide. When some receptors detect that the amount of oxygen drops, they promote an increment of the respiratory rate. There are many different chemical receptors in out body, such us the carotid and aortic receptors.

Some hormones can also have different effects on the respiratory system. Adrenalin, for instance, affects not only to the respiratory rate, but also to the amount of air inhaled by changing the diameter of the bronchioles and increasing the air flow to the alveoli. Other hormones have just the opposite effects.




- Human Body Systems
Human Body Systems!Integumentary System: Your body is very prone to damage, and that's why we have this system! This is an organ system that helps protect the body. It has many functions such as to cushion, excrete wastes, regulate temperatures...

- #51 Summary Of Gas Exchange
1 Multicellular organisms often have surfaces that are specialised to allow exchange of gases to take place between their bodies and the environment. Alveoli in the lungs form the gas exchange surface in mammals.  2 In the human...

- #49.2 Gas Exchange And Smoking Syllabus 2016
9.1    The gas exchange system 9.2    Smoking The gas exchange system is responsible for the uptake of oxygen  into the blood and excreting carbon dioxide. An understanding of this system shows how cells, tissues and organs function...

- Breathing And Exchange Of Gases
Click here for PDFRespiration is the oxidation of nutrients in the living cells to release energy for biological work. Breathing is the exchange of O2 from the atmosphere with CO2 produced by the cells. Respiratory organs·   General...

- Respiration: Pulmonary Ventilation And Exchange Of Gases
Respiration can be divided into three different consecutive processes: ventilation, external or pulmonary respiration and internal or tissular respiration. Respiratory SystemVentilation is the process related to the movement of the air,...



Biology








.