Why are genomes so large?
Biology

Why are genomes so large?



KEY TERMS:
  • The C-value is the total amount of DNA in the genome (per haploid set of chromosomes).
  • The C-value paradox describes the lack of relationship between the DNA content (C-value) of an organism and its coding potential.
KEY CONCEPTS:
  • There is no good correlation between genome size and genetic complexity.
  • There is an increase in the minimum genome size required to make organisms of increasing complexity.
  • There are wide variations in the genome sizes of organisms within many phyla. 

The total amount of DNA in the (haploid) genome is a characteristic of each living species known as its C-value. There is enormous variation in the range of C-values, from <106 bp for a mycoplasma to >1011 bp for some plants and amphibians

Figure 3.5 summarizes the range of C-values found in different evolutionary phyla. There is an increase in the minimum genome size found in each group as the complexity increases. But as absolute amounts of DNA increase in the higher eukaryotes, we see some wide variations in the genome sizes within some phyla.











Plotting the minimum amount of DNA required for a member of each group suggests in Figure 3.6 that an increase in genome size is required to make more complex prokaryotes and lower eukaryotes.
Mycoplasma are the smallest prokaryotes, and have genomes only ~3× the size of a large bacteriophage. Bacteria start at ~2 × 106 bp. Unicellular eukaryotes (whose life-styles may resemble the prokaryotic) get by with genomes that are also small, although larger than those of the bacteria. Being eukaryotic per se does not imply a vast increase in genome size; a yeast may have a genome size of ~1.3 × 107 bp, only about twice the size of the largest bacterial genomes.
A further twofold increase in genome size is adequate to support the slime mold D. discoideum, able to live in either unicellular or multicellular modes. Another increase in complexity is necessary to produce the first fully multicellular organisms; the nematode worm C. elegans has a DNA content of 8 × 107 bp.


We can also see the steady increase in genome size with complexity in the listing in Figure 3.7 of some of the most commonly analyzed organisms. It is necessary to increase the genome size in order to make insects, birds or amphibians, and mammals. However, after this point there is no good relationship between genome size and morphological complexity of the organism.
We know that genes are much larger than the sequences needed to code for proteins, because exons (coding regions) may comprise only a small part of the total length of a gene). This explains why there is much more DNA than is needed to provide reading frames for all the proteins of the organism. Large parts of an interrupted gene may not be concerned with coding for protein. And there may also be significant lengths of DNA between genes. So it is not possible to deduce from the overall size of the genome anything about the number of genes.
The C-value paradox refers to the lack of correlation between genome size and genetic complexity (Gall, 1981; Gregory, 2001). There are some extremely curious variations in relative genome size. The toad Xenopus and man have genomes of essentially the same size. But we assume that man is more complex in terms of genetic development! And in some phyla there are extremely large variations in DNA content between organisms that do not vary much in complexity (see Figure 3.5). (This is especially marked in insects, amphibians, and plants, but does not occur in birds, reptiles, and mammals, which all show little variation within the group, with an ~2× range of genome sizes.) A cricket has a genome 11× the size of a fruit fly. In amphibians, the smallest genomes are <109 bp, while the largest are ~1011 bp. There is unlikely to be a large difference in the number of genes needed to specify these amphibians. We do not understand why natural selection allows this variation and whether it has evolutionary consequences.





- Q: Compare And Contrast The Prokaryotic And Eukaryotic Genomes
The eukaryotic genome is diploid but the prokaryotic genome is haploid. The eukaryotic genome has multiple origins of replication but the prokaryotic genome has only one origin of replication. The eukaryotic genome may have more than one chromosome but...

- The Human Genome Has Fewer Genes Than Expected
KEY CONCEPTS:Only 1% of the human genome consists of coding regions. The exons comprise ~5% of each gene, so genes (exons plus introns) comprise ~25% of the genome. The human genome has 30,000-40,000 genes. ~60% of human genes are alternatively spliced....

- Total Gene Number Is Known For Several Eukaryotes
KEY CONCEPTS:There are 6000 genes in yeast, 18,500 in worm, 13,600 in fly, 25,000 in the small plant Arabidopsis, and probably 30,000 in mouse and <40,000 in Man. As soon as we look at eukaryotic genomes, the relationship between genome size and gene...

- Bacterial Gene Numbers Range Over An Order Of Magnitude
KEY CONCEPTS:Genome sequences show that there are 500-1200 genes in parasitic bacteria, 1500-7500 genes in free-living bacteria, and 1500-2700 genes in archaea. Large-scale efforts have now led to the sequencing of many genomes. A range is summarized...

- Eukaryotic Genomes Contain Both Nonrepetitive And Repetitive Dna Sequences
KEY TERMS:Nonrepetitive DNA shows reassociation kinetics expected of unique sequences. Repetitive DNA behaves in a reassociation reaction as though many (related or identical) sequences are present in a component, allowing any pair of complementary sequences...



Biology








.