Figure 1.37 illustrates this situation, in which the gene is considered to comprise a continuous stretch of DNA, needed to produce a particular protein. It includes the sequence coding for that protein, but also includes sequences on either side of the coding region.
A bacterium consists of only a single compartment, so transcription and translation occur in the same place, as illustrated in Figure 1.38.
In eukaryotes transcription occurs in the nucleus, but the RNA product must be
transported to the cytoplasm in order to be translated. For the simplest eukaryotic genes (just like in bacteria) the transcript RNA is in fact the mRNA. But for more complex genes, the immediate transcript of the gene is a
pre-mRNA that requires
processing to generate the mature mRNA. The basic stages of gene expression in a eukaryote are outlined in Figure 1.39. This results in a spatial separation between transcription (in the nucleus) and translation (in the cytoplasm).
The most important stage in processing is
RNA splicing. Many genes in eukaryotes (and a majority in higher eukaryotes) contain internal regions that do not code for protein. The process of splicing removes these regions from the pre-mRNA to generate an RNA that has a continuous open reading frame (see Figure 2.1). Other processing events that occur at this stage involve the modification of the 5
and 3
ends of the pre-mRNA (see Figure 5.16).
Translation is accomplished by a complex apparatus that includes both protein and RNA components. The actual "machine" that undertakes the process is the ribosome, a large complex that includes some large RNAs (ribosomal RNAs, abbreviated to rRNAs) and many small proteins. The process of recognizing which amino acid corresponds to a particular nucleotide triplet requires an intermediate transfer RNA (abbreviated to tRNA); there is at least one tRNA species for every amino acid. Many ancillary proteins are involved. We describe translation in 5 Messenger RNA, but note for now that the ribosomes are the large structures in Figure 1.38 that move along the mRNA.
The important point to note at this stage is that the process of gene expression involves RNA not only as the essential substrate, but also in providing components of the apparatus. The rRNA and tRNA components are coded by genes and are generated by the process of transcription (just like mRNA, except that there is no subsequent stage of translation).