The ribosome is a compact ribonucleoprotein particle consisting of two subunits. Each subunit has an RNA component, including one very large RNA molecule, and many proteins. The relationship between a ribosome and its subunits is depicted in Figure 5.8. The two subunits dissociate in vitro when the concentration of Mg2+ ions is reduced. In each case, the large subunit is about twice the mass of the small subunit. Bacterial (70S) ribosomes have subunits that sediment at 50S and 30S. The subunits of eukaryotic cytoplasmic (80S) ribosomes sediment at 60S and 40S. The two subunits work together as part of the complete ribosome, but each undertakes distinct reactions in protein synthesis.
All the ribosomes of a given cell compartment are identical. They undertake the synthesis of different proteins by associating with the different mRNAs that provide the actual coding sequences.
The ribosome provides the environment that controls the recognition between a codon of mRNA and the anticodon of tRNA. Reading the genetic code as a series of adjacent triplets, protein synthesis proceeds from the start of a coding region to the end. A protein is assembled by the sequential addition of amino acids in the direction from the N-terminus to the C-terminus as a ribosome moves along the mRNA (Dintzis, 1961).
A ribosome begins translation at the 5
end of a coding region; it translates each triplet codon into an amino acid as it proceeds towards the 3
end. At each codon, the appropriate aminoacyl-tRNA associates with the ribosome, donating its amino acid to the polypeptide chain. At any given moment, the ribosome can accommodate the two aminoacyl-tRNAs corresponding to successive codons, making it possible for a peptide bond to form between the two corresponding amino acids. At each step, the growing polypeptide chain becomes longer by one amino acid.